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% The Experiment

PN

Ws have constructed a local code generator for the
VAX-I!‘ using a parser-like instruction pattern matcher.
"l;;uzodo generator replaces the second pass of the

Portable 7C’ compiler. This paper descridbes the
design of the code generator end the special considera-
tions imposed by the pattern matching process. We
summarize the structurs of the machine description
grammar and its associsted semantic actions, es well as
the toolis we developed to manipulate the large VAX
description. In our experience, this approach makes the
instruction selection phase of the compiler easier and

faster to implement, and pnore liksly to be correct than
traditional techniques. é/\—-

1. Introduction

In the last few yesars, we have been studying an
approach to code generation in which instructions ere
ssiected by a pattern-metching process that chooses
instructions from e table generated automatically from
¢ machine description. The initial version of the tech-
nique is described in [Clanville7?] and [Glanville78].
{GrahamB0] gives an overview of this and related tsch-
niques: [Henry81] gives a detailed description of an
impiementation. togsther with some improvements to
the method. Related work appears in [Ganapathiso),
[Jansohn80], (Gujrai81), and [Crawfords2).

Recently, we conducted s limited experiment to
gain mors experience with this technique [Sehul-
man82). Our goal was to sttempt to uss this method in
a controlled setting in which comparisons would be pos-
sible. Our experience bas been favorable and is
described in this paper.
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The UNIX portabls "C'’ compiler (abbreviated as
PCC) (Johnson79] is a retargetable compller for the sys-
tems programming language “C”. R is written in “C"
and runs under the UNIX operating system. PCC has
been successfully retargeted to over two dozen
machines [Johnson81]. The compiler has two logical
pbases. The first phase is mostly specific to “C", and
produces an intermediate representation of tbe pro-
gram consisting of a forest of expression trees inter-
spersed with target machine specific instructions to
implement unconditional control flow. The second
phase generates assembly code and is mostly target
machine dependent, driven by a somewhat ad Aoc pat-
tern matcher using patterns taken from a hand gen-
erated table. PCC does no global optimization or rscog-
pition of common subexpressions. A Fortran 77 com-
piler [Feldman79] and the Berkelsy Pascal compiler
{Joy79] share the same intermedista representation
and second pass of the portable "C" compiler.

Our experiment w~. to replace the second pass of
the portable “C* compiler with a code generstor that
uses the Graham-Glanvills methods. We chose to pro-
duce code for the machine we bad available, a VAX-11,
and to devote only a limited amount of time to the pro-
ject. Our initial goal was not to develop s truly retargst-
able compiler, but to gain experience with Graham-
Glanville techniques, generating good local code for a
real machine, for production programming languagss.
to force us to solve real problems. By comparing our
genersted code with that produced by PCC, we could
analyzs the sflectiveness of our implementation deci-
sions. This goal has been achieved, and with this experi-
ence we are now trying to make the code generator
retargetable and to improve its performance.

We had available a previous implementation of a
Grabham-Glanville code generater generator, the Code
Generator Generstor's Work Station (CGCWS) [Henry01).
However, we chose to discard parts of it. The CGGWS's
internal model of instruction deseriptions was too lim-
ited; it ran too slowly and produced tables that were too
large. The CCCWS's code generstor spent too much
time interpreting cumbsersomne tsbles when checking
sernantic attributes. When we began the experiment we
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were uncertain how we wanted to change the automated
semantic bandling. Consequently..we chos¢ L0 program
the semantic attribute evaluator as VAX-specific rou-
tines hend-coded in "“C", rather than attempting to gen-
erate the semantic actions automatically. We are now
converting to program-generated semantic ncuom
This change will make retargeting easier.

We were able to reclaim all parts of the CGGWS
relating to the syntactic aspects of a machine descrip-
tion grammar, including the table gensrator. All pieces
of the CGGVWS dealing with semantic aspects wers dis-
carded.

$. Grabam-Glanville Code Generation

There are three logical parts to the basic Craham-
Glanville code generstion technique. The target
machine description (1) is fed to a tabie constructor (2)
in the cods generator generator. The coastructed
tables then control an instruction pattern matcher (3)
in the code generstor. The first two perts ere stafic:
they are used once for each target machine. The last
part is dymamic, invoked for every program being com-
piled.

3.1. Target Machine Description

In the Graham-Glanville system, instructions on
the target machine are described as sttributed pro-
ductions in a context free grammar. Thers is one non-
terminal in the grammar for sach class of registers on
the target machine, and an sdditional sentential non-
terminal. In eddition, there can be non-termiinals for
peeudo-registers and for status bits or condition codes.
The terminal symbols in the grammar are the node
labels in the expression trees for which code is to be
gensrated. The right hand sides of the productions in
the grammar have the prefix linearized form of a com-
putation tree consisting of terminals and non-
terminals. The left hand side designates how the com-
putation effects the procsssor. In the original
Graham-Glanville formulation, esch production
describes the operation performed on the targst
machine by ons instruction. together with one combi-
nation of addressing modes describing the operands.
Wse call such & machine description grammar flat.

For most examplies in this paper, we will show the
linsarised tres, instead of the graphical representation
of the tres. Figure 1 describes the Lterminal and non-
terminal symbols we will use throughout the remainder
of the peper (exsept for the Appendix). By convention.
all terminal gymibold start with an upper case letter;
non-terminal symbols begin with lower case letters.
Unless spumod ouur'ln all non-terminel symbois
are nil-dry.

symbel 4 meaning loft right
{arity) ehild child
Assign 2 assign destination source
Plus 2 add operand > operand
Mul e multiply operand ' operand
Cbranch 2 conditional test destination
branch
Cmp 2 comparse opsrand operand
Indir 1 memory address
fetch
Name 0 global
varisble
Dreg 0 dedicated
register
Zero 0 0 -
One 0 1
Two 0 2
Four 1] 4
Eight 0 []
Const 0 constant
Labal 0 label
rval 0 source
ival 0 destination
reg 0 register

Ngure 1: Terminal and Non-Terminal Symbals

As described in [Glanville78]. esch production has
associated with it a string and a set of semantic bind-
ings into the left and right band sides of the produc-
tion. The string and bindings are used to construct the
assembly code representation of the genersted
instructions. In eddition, each symbol on the right
band side may bave semantic qualificetions, all of
which must be msat befors that pattern is selected.
For example, the semantic qualification may require s
constant to be in a specified range (implementing a
rangs ddiom), or require a constant or register to be
the same one referenced in another part of the pro-
duction (implementing a binding idiom). As the reader
will ses, semantic qualification is handled differently in
our code genarator.

5.8. Tabie Construster

The machine description grammar is processed by
a table-generating program similar to an SLR/*) parser

generator. Moet machine description g0 - -~y ars
highly ambiguous, since the target mac. oau-
ally implement an expression in many difi. .

The table gensrstor disambiguates the grammi: by
favoring o shift over a reduce in a shift/reduce
conflict, and a reduction by the longest possible rule in
a reduce/reduce conflict. Thus, the table-driven pat-
tern matcher implements the mesimal munch method
[Cattello0] in which the largest possibie pattern is
matched. If thers are two or more longest rules, then
the table generator cannot statically choose among
them. In that case, the pattern matcher will chooss
among them dynamically using semantic attributes.
The table generator containg aigorithms to ensure

that the pattern matcher will not get into a looping
configurstion. where non-tsrminal chain rules are




eyclically reduced. The table generator also checks if
thers is some input for which the pattern matcher will
perform an error action, also calied a syntactic dlsck.
In this case, the present table generstor only notifies
the user. and does not attempt corrective action.

In eddition, the table gensrator looks for patterns
which can be used oaly if a semantic condition is met.
In general. the input cannot bs guarantesd to satisfy
such a condition. Therefore, in the event of such &
gemantic bdlock, .the table gensrator constructs a
default action elternative frum other productions.
Thet defsuit altarnative typically causes more than one
instruction to be generated.

S3.3. Pattern Matcher
The instruction pattern matcher is & table-driven
shift/reduce parssr, invoked oncs for sach expression
to be compiled. Each reduction corresponds to one
logical instruction® emitted in linear time in a provadly
correct order. Since the pettern matching and table
construction asigorithms are based on a wsll under-
stood model, and the tables are constructed automati-
cally by a provably correct algorithm [Clanville?8), the
only source for error in constructing the iastruction
selector is in the machine description or the support-
ing semantic routines.

4. Modifications to the Basic Algorithm
We find that because of the richness of the instruc-
tion set, a flat mechine description grammar for the
useful VAX instructions, written using only the register

and the sentential non-terminals, would have over 8 mil-
lion productions. In order to write and process a feasi-
ble VAX description. the description grammar must be
Juctersd. In a factored grammaer. aedditiona! non-
terminals group togetber symbols having & common
function throughout the grammar. To preserve the pro-
perties of the pattern mateher, only two kinds of factor-
ing are considered: factoring of complete subtrees and
factoring of operator symbols into classes. Thus, in a
factored grammar, ssch right band side is either a
flattened tree or & single operator symbol.

Rot every production in this factored grammar
causes cods to be emitted. Productions now either
oncaprulate phrases (subtrses), emit instructions, or
sorve as glus. In the factored grammar, 8 non-terminal
no longer has a simple semantic attribute, as it did in
the fiat grammar when it could only be a register. With
the freedom to factor, there are now many more
cholices to make when writing the grammar and imple-
menting the semantics. We will describe the design
decisions for the VAX grammar and semantic attributes
we used after ws outline the phase structurs of the code
generator.

8. Code Generstor Organisation and Data Plow

In order to cater to the nesds of the parser-driven
pattern matcher, our code generstion phase is one sin-
gle program structured into iogical subpbases, es shown
in Mgure 2. Roughly one balf the code generation time
is spent in the pattern matching pbase. We now
descridbe the phases in more detail.

language
spscific VAX specific code generator
front ends
Phase 1 Phase 2 Phase 3 Phase 4

4. ncn uw
! control flow instruction
3 sxpansion selection
3 ¢ A B c D E

Pascal operator pattern idiom output | __
= / sxpansion matehing recognition generation
. TortranT? 1 evaluation mhurm )
5 gome Accession For
- NT1S  oRARL
N A an ion tree from O:' L al or Fortran 77 DTIC TAB
- oxpress *C", Paseal or an
‘ B sequencs of expression trees Uoanamouunced _
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E" E symbolic VAX assembly code B
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v : atributtons
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In the first phase, sach expression tres for which
cods is to be generated is transformed to make cods
generation sasier. Soms of these transformations
might mors properiy be done by the first pass of the
*C", Pascal or Fortran compilers. However, we choss
not to modify the existing “front ends™.

S.1.1. Phase 1a: Explicit Contrel Flow

The short circuit operstors in “C” (kk and |)
contaln implicit eontrol. flow. Sub<tress with thess
operators are rewritten to make the implicit tests and
conditional branches explicit. Sub-trees descridbing
function calls are replaced by compller generated
temporaries so that context switching does not occur
within expression trees. A use of such & temporsry is
preceded by an expression tree which assigns the
result of the function evaluation to the temporary.
(Thus, function calls are no longer embedded in morse
complex sxpressions.} Both of these transformations
are target machine independent.

Two additional control flow bmfmuou are
motivated by the srchitscture of the VAX. The first
removes selection operutors from the tres. The selec-
tion operators test a boolean valus and evaluate one
of two possible expressions for the value of the selec-
tor. A transformation makes the conditional branches
explicit. Second, a truth value representing the
result of & comparison must be constructed by a
ssquence of tests, jumps and assignments, since the
VAX lacks an instruction to comstruct such a value.
The tree is rewritten to insert the more primitive
operstions.

These operators are rewritten in phase ome
becauss we wanted to isclate all issues of control flow
to the tree rewriting phase. Unfortunately. the latter
two transformed computations each feed a tem-
porary register. Therefore, the first phase requires a
register manager that is totally disjoint from the
register manager in the third phase. This tradecfl
needs to be resvaluated; see §5.3.3.

$.1.8 Phase 1 Operator Expensica and Cencaniselly
Crdered Operands

Some additional transformations are motivated
by the particular target machine. Rewriting is nsces-
sary to espand intermediate language operators bav-
ing no corresponding hardware operstor on the target
machine. Unsigned arithmstic operators are typical
oxamples.

We ealso rewrite the tres to reorder csrtain
groups of operands and replace particular computa-
tiona by others so that fewsr patiterns are needed.
This canonicalisstion reduces the number of patterns
significantly, especially those descridbing eddresses.
Tor ezample, left shift by s constant s replaced by

.‘.

6.1.8. Fhase ic: Braluation Ordering

Befors instructions are selected for an expres-
sion tree, the portable *‘C'* compjler reorders the
tres, using two goals motivatsd by Rhs techniques in
[Sethi70). The first goa! is to minimize the register
requirements for evaluating the expression tres. The
second goal is to discover subsxpressions whose
svaluation will cause subsequent register spilling and
to insert explicit stores to compiler generated tem-
porariss to svold the spill. By bandling the situation
in advance, the cods seiector will never run out of
registars. Since in the portabie “C’’ compiler reord-
oring is distinet from instruction selection, coordina-
tion i» less than perfect, and is a source of many
errors in retargeting PCC [JobnsonB81). Nevertheless,
the attempt to prevent spilling is s good idea. The

reordering in PCC occurs in its second
pass and {s therefors not refiected in the input to our
cods generator.

Since the instruction selector in our code genere-
tor does & left to right, no backup traversal of the
expression tres, unpredictably allocating registers, it
is possible that a mostly right recursive tree could
run out of registers. However. an equivalent left
recursive tree might not have this prodbiem. Since
“C", Pascal and Fortran do not specify an operand
evaluation ordering, we introduced e simple reorder-
ing heuristic in the first phass of our code generator.
The heuristic is to assume that the more complicated
subtres of a binary operator, and hencs the one that
should be the left subtres, is the subtree with the
most nodes. Ths subtrees are swapped sccording to
this measure, and if the binary operator is not com-
mutative (assignment, subtraction and division are
ezamples), then it is raplaced by a new operator that
tells the third phase of the code generator to order
the somputed values properly. In our experiment,
adding thess reverse binary operators inoressed the
size of the grammar by 2%, increased the size of the
tables by 60X, but affected register allocation in less
than 1% of the expressions in one set of “'C" pro-
grams. Thess statistios reflect both the simple nature
ot *°C'" expressions, and the preexisting lsft recursive
bias of compller-gensrated expression trees.

The first pbase of cur code generator will dis-
oover those subtrees which will always require regis-
ter spilling on the YAX, by virtus of tbe operstion
being performed. However, becsuse of register
management complezity issues, the first phase can
not kmew which valuss might be spilled. Since func-
tion calls and structure or record assignment always
require spills, the first pbase factors them out of
oxpressions and replaces them with references to
sompiler temporaries. The register manager in the
third pbese is prepared to spill registers into tem-
peraries on the fly.

6.8. Fhese & Pattorn Natcher

The second phase is the pattern matcher. Within
the pattern matcher, sach encapsulating reduction
csndenses the semantic attributes of the pattern into
e signafure aseociated with the left-band side non-
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terminal. Typically, these reductions correspond to
addressing modes. Since the other phases neither can,
nor should, prediot how the patiern matcher will meke
these condensstions, all communigstion from the
proceding tres transformers to the following semantic
phase is through the semantic attributes. This conven-
tion can be a logical bottieneck. Other redustions are
either for parsing purposes. or causs 6ne or more
instructions to be emitted by the subsequent phase.

8.3. Fhase & hstructisn Generatisn

The majority of the work in the post-pattern-
matching phase performs relatively uninteresting
housskeeping chores. The interesting parts are the
semantic aspects of instruction selsction and geners-
tion, and register aliocation.

As & precondition to entry into the Instruction
generation phass, the syntactic pattern bhas selected &
syntactio-pattarn for a three address instruction. That
pattern may correspond to more than one choice of
instructions or pssudo instructions, depending on the
semantic restrictions. The pattern matcher can,
therefore, be regarded as an instruction scAems. If it
was necessary, the pettern matcher has also forced
the instruction’s operands to be converted to the
appropriats dats types.

5.8.1. Phase Sa: Initial Instructien Selestion

Instruction selection is driven by the selected
syntactic pattern, and by the information stored in e
hand writtsn #nstruction febls. Each eniry in the
instruction tabis distinguishes among different
instructions having the same syntactic description,
and specifies the description of esach instruction that
can be emitted. An entry in this table is chosen based
on the generic operator and the types of its operands.

Figure 3 shows the tabls entry for addition of
longs. The “op” field is the operstor name. The “§*
fisld is the number of operands required by the opera-
tor and the “print” fleld is the assembler mnemonic
for the instruction. The “binding” Seld specifies the
binding idiom (an operstor names), the “e<" field
indicates whether the source operands can be
swapped, and the "‘range” fisld specifies the internal
name for s range idiom.

- (]

» D yos 1 addd

ADD 2 LONGC "sddif’ null no [ edd2
INC 1 LONG “mel" null a0 aull

Vigere & Instructien Table Matry for Long Mdtica

When requested to generste ceds for the (atypl-
eal) *C” assignment expression
asiT¢ g

\he instruction selector is presented with the syntac-

te pattern for & three eddress add instruction, and

thess semantic descriptors for the eperator and the

cm;r dutlnrou ist source &nd -u:cc
ra| gggr‘g_d
%n <L 5b}> <l 817> <L, 5rpS>

(Here. “a(fp)” is the assembler. syntax for wari-
able 2", "$17" iz the assembler syntaz for the
immediate constant 17", and “L" stands for the data
type long.)

Initislly, the first line in the instruction tabdle
entry is found. The idiom recognizer may then select
the second or third line in the instruction cluster. We
will return to this example in the next section.

It ssmantic blocking were possible for e given
instruction, the instruction selector would first check
ths semantic restrictions causing blocking. If there
were s ssmantic biock, the selector would then
replace the given instruction by a default list. How-
ever, our VAX description does not contain any seman-
tie blocks.

It the destination wers an assignable register,
iostead of & memory location, then the register
manager would be called at this point. The assigned
register would be encapsulated into an addressing
mode descriptor, and the general instruction selec-
tion mschanism would be called.

§.3.2 Phase 3: ldiom Recognition

We recognize two classes of idioms. binding
idioms and range idioms. A binding idiom determines
whether one of the source opsrands matches the des-
tingtion operand, as one precondition for turning a
three address instruction into a two address instruc-
tion. A rangs idiom checks whether ome of the
sources Lo the instruction is a constant in a particu-
lar, possibly degenerate, range. Binding idioms are
always checked befors range idioms. Thers is one
range idiom associated with each VAX instruction that
can be simplified. The range idioms ars implemented
by functions written in *°C’’; these functions follow a
relatively straightforward coding style.

Lst us now return to the example. The binding
idiom (ADD) ohecks that one of the sources matches
the destination. Either source will do, as specified by
the "e«" flald in the instruction table. Since the
sscond source matches the destination, the two
opsrand variant is used. The two operand variant has
0o dinding idiom. but there is a range idiom associ-
ated with the addif, so the range idiom is tried. That
idiom determines whether the other source is a literal
with the value ons; if 30, the inel instruction would be
used. Since in our example the test fails, the wddi®
instruction is emitted instead.

Since we have the mechanisms, it is convenient
to bave the idiom recognizer catch certain pssudo-
instructions. The previous phases incorrectly assume
that the VAX ocan implement these pesudo-
instructions in ons machine instruction. These
pesudo-instructions include signed integer modulus,
which requires a register to bold an intermediate
result, and unsigned division which requires a call toa
lidbrary function that is known amot to medify eny
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registers. These opsrators are not rewritten using the
general mechanism in the first phase, because they
were not anticipated in the design of that phase.

With the exoeption of pssudo-instruction expan-
slon, the idiom recogniser sub-pbase is optional in the
sense that if it were omitted, correct code would still
be gensrated. Many of the choices made by this
pbase could instead be made by s mors general
peepbole optimizer, provided that register assign-
ment had not already besn done.

6.3.3. Phase 3: Register Hanagament
The register manager is extremely simple and
The conventions for register usage
established by the portable “C'* compiler divide the
registers for the VAX into dedicated registers, which
are assigned by the first pass of PCC, and the allocat-
able registers, which are assigned by our register
manager. The register manager in this phase supplies
assignable registers upon demand from other routines
in the instruction generator.

Sincs there is no detection of common sub-
expressions (except thoss with very short lifetimes
created by the tree transformer), the least recently
used register is also the registsr with the most distant
future use. Consequently, the registers can bs
assigned and freed with a stack discipline. When an
assignable register is requested as a destination for e
particular instruction, the register manager attempts
to recleim and reuse assignable registers from the
source operands to the instruction. Failing that, the
next free register is selected. If there is no allocst-
able register available, o register from the bottom of
the stack is spilled. Registers are always spilled to
compiler genersted variadles. We call memory loce-
tions holding spilled values virtual registers, to distin-
guish them from phywicel regiaters.

I o register is spilled, it is reloaded just before it
is used, since the register manager cannot determine
whether in a given context an alternative instruction
could bave fstched the operand directly from
memory®. No attempt is made to remember register
contents in order to replace fetches of copies from
memory or to avoid spills when copies already exist in
memory.

Recall thet register assignment is also performed
when rewriting trees in the first phase (§5.1.3).
Despite logical separation, both phases allocate regis-
ters from the same bardware register bank, so the
effects of register assignment performed in the first
phase must be communicated to this phase. The first
pbase gensrates special trees specifying which regis-
ters it assigned. as well a9 & use count. The deserip-
tion grammar has spescial productions to mateh these
treus, and the register manager in this phase adjusts
fts internal model accerdingly.

We successtully ran and developed the cods gen-
erator for monthe without finding a “C" or Pascal pro-
gram that ran out of registers. Consequently, it
soemed unimportant te implement better register

% Nensy®1] constdere methods for finding altarnstive instrestions.

mansgement techniques. Finally, the demands of cer-
tain Fortran programs required us to implement this
dmple form of register spill and unspill.

6.4. Fhase 4: Output Generstion X

Instructions are formatted m; their assembly
cods repressntation by consulting two tables. The
“print" field in the instruction table (Aigure 3) defines
the operator. Each operand is printed by consulting a
band written eddressing mods format table, which is
not described here.

6. Grammar and Code Gensrstor Design Details

We now examine issues in the grammar and code
generator design, in particular, side effects, the gram-
mar structurs, the augmented grammar, our method
for bandling typs conversion, and finally the probiems
we bad '‘rounding out” the code generator to accept
the entirse “C" language. Thess issues relate to all
phaeses of the code generator.

8.1. Side Effects

I an instruction produces ussful results in two or
more locations, then the basic Graham-Glanville algo-
rithms can only track one result. The other result
must be ignored, uniess the computation has been
flagged in the input to the code generator as a kind of
common sub-expression. Failure to exploit such
muiti-valued expressions can result in code
inefficiency for both asuto-increment and auto-
decrement side effects on registers (doth ere classed
as the aufoine addressing mode), and for tracking the
condition codes that are set by most instructions. We
are able to model autoinc and condition codes by per-
forming either source language driven recognition. or
extremely simplified data Sow analysis. For *'C pro-
grams on the VAX, we generate acceptable code.

We are currently examining the possibility of using
e cods gensrator that does not recognize autoinc or
condition codes, together with a peephole optimizer
with data Siow analysis (Davidson81] (Giegerich82]. The
pesphole optimiger would introduce auteine and condi-
tion code improvement where possible. That organiza-
tion would simplify more parts of the code gensrator
than the following discussion suggests.

The pesphole optimizer strategy would still not
model either the sxtended divide instruction, which
computes both a quotient and a remainder, or the
string instructions. Howsver, using both quotient and
remainder would be appropriate only if the scurce
language provided a multi-valued divide operator, or if
data flow analysis revealed that both values wers used.
Neither of these situstions are possible in the com-
pilers under discussion. (Morgan682] discusses string
instructions in & companion paper.

In the present code generstor, we generste the
autoinc addressing mode only to modify dedicated
registers, and then only if the dedicated register is the
destination of a postfix inerement or prefix decrement
binary operator. Thess operators are in the
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lahmodhulluuqo ounly if they are in the source
Finding otber opportunitiss for autoine
entails uu flow analysis. [GanapethiBl] discovers
ways to use autoine by e post analysis of basis blocks.
The semantic descriptor for autoine must be han-
died carefully to prevent the side effsct from
more than once: after the first use and side effect, the
descriptor is modified so any subsequent reference will
refer to the same location®.

On the VAX, aimost every instruction sets the con-
dition codes. usually as s side eflect. Consegquently, if
s condition code value is to be used for e conditional
branch (the only possible use), that use must follow
immedistely. Therefore. our code gensrator can han-
dle condition codes syntactically without the multi-
value tracking problem we alluded to sarlier.

in fact, because of the immediacy of condition
code use, condition codes ars not explicitly reflected
in our maechine description. For exzample, an add
instruction which puts its value into a register might
bave the description:

reg <+ Plusrvalrval ' addS rval, rval, reg”

whers “rval” denotes an sddressing mode. As e side
effect, the instruction sets the condition code. A con-
ditional branch instruction which tests the condition
code is described by:

e« Cbranch Cmp reg Zero Label “jCmp Label”

Here terminals, “Cmp™ and *“Zero” describe the par-
ticular condition of interest and ""reg’ implicitly refers
to the condition code setting. Thus, the pattern
matcher automatically detsrmines' from context
whether the instruction was executed for its condition
code setting or not.

0.2. The Augmented Gremmar

We developed the initial machine desecription
grammar by factoring address subtrees and operator
classes. This initial gremmar was over factored, caus-
ing incorrectly resolved shift/reduce conflicts, leading
to incorrect or inefficient code. The grammar also had
syntactic blocks. Both problems were solved by adding
productions to the initial grammar.

0.2.1. Overfactored Orammar

As an example of overfactoring, our initial factor-
ization grouped the operators “Plus”, “Mul”, “Or",
and Xor" togethsr into a special operstor non-
terminal, called “binop”. This new non-terminal
replaced the operator in occurrences in which it was
the primary operation of the instruction. We chose
this fectorization to rsduce the number of states.
This factoring seemed to make ssnse, since these
operators are all binary and commutative, have ident-
foal operand semantics, and are implemented in
essentially the same way. However, “Plus” and “Mul"
also ocour in contexts in the grammar {n which they
are secondary operstions, for ezample within

'hd—m be rewsed essignment
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oddressing modes. Consequently. the initial grouping
caused many shift/reducs conflicts of the (simplified)
form:

[ displ « Plus . constant reg ]
[ binop < Plus.] -

A decision to shift in this state is tantamount to
deciding that the “Plus” will be implemented by the
eddressing hardware as a displacement address
(“displ”), rather than by an add instruction. The
decision is premsturs, and could lead to & syntactic
block, aitbough not in this simple exampls. To aveid
this problem, "Plus” and ““Mul” cannot be factored as
& “binop”, although that fectoring is walid for “Or
and “Xor".

The esample describing condition codes in §8.1 is
also over factored. There is & production, not previ-
ously shown,

reg « Dreg [no code, just condense|

that allows dedicated registers to bs used everywhers
assignable registers can be used. This production
does not gensrate codse, and 50 the condition codes
are not set, contrary to the sssumption sbout the
non-terminal “’'reg” in the first general pattern:
e« Cbranch Cmp reg Zero Label “jCmp Label™
To solve this problem, we added a new production:
o< Cbranch Cmp Dreg Zero Label
“tatl Dreg: JCmp Label™

This change circumvents the factoring in this context,
since the choice of & shift over a redusce will force
selection of the sscond “Chbranch’ pattern for a dedi-
cated register, rether than the first. Notice that we
still have the advantage of factoring in other register
contexts.

Most of the outstanding bugs in our cods genera-
tor are caused by remaining instances of overfactor-
ing. We ars developing a fectoring theory to help us
find and repair these cases automatically. We have
not yet invested the time to implement tools and
redesign the grammar to avoid overfactoring. How-
eover, we feel there is nothing inherently difficult
about writing machine grammars to avoid these prob-
lemas.

6.2.2. Syntactic Hecking

We also had to add productions to alleviate syn-
tactic blocks (error productions). Syntactic blocks
occur in long productions because coding alterna-
tives, oxpressed ss shared left context in a given
state, are insufficient to handle all cases. To prevent
syntactic dlocking, we added bridge productions to
the gremmar. A bridge production shares left context
to the point of, or slightly preceding, a syntactic
block. A bridge production does not correspond to a
single Instruction or addressing mods. However, it
will handle the more general oeontinustion of the
shared prefix.




The following two productions show how the
bridge productions are used. The tree form of the
right hand sides is in Figure 4; the linearized form is
shown below.

block: dx + Plus Plus Const reg Mul. Four reg
bridge: reg - Plus Plus Const reg rval

The first production describes the address com-
putation performed by the displacement indexed
addressing mode; note that the computation performs
an implicit muitiplication by four. However, there isa
syntactic block in this production at the left sublree
of the “Mul", indicated by the '’»*, since other argu-
ments to “Mul” are possible. The second production
is the bridge production. *‘Rval’” is a non-terminal
corresponding to any general operand, and conse-
quently any integer expression which could be com-
puted into a register, so “'rval” will cover the svalua-
tion of subtrees other than multiplication by four.

Syntactic blocks can be dstectsed automatically
by the table constructor (§3.2), although when we
developed the grammar, this part of the table con-
structor was disabled for trivial implementation res-
sons. We found it satisfectory to inspect the dense
action-next tables for error actions: we bhad no
surprises when ws re-snabled the automatic check.
The ssmantic actions for bridge productions can be
synthesized automatically from real instructions,
although we also did that by hand. (The automatic
techniques are discussed in [Glanville78].)

We do not yet bave a theory sxplaining what the
unshared part of the bridge production should be. In
the example sbove. we chose the recursive non-
terminal “rval”; the rscursive non-terminal “reg"
would have covered the block as weil. When the gram-
mar is written it is difficult to predict which echoice for
ths covering non-terminal produces better code.

block: [ax]

6.3. Semantic Blocking

Our VAX description has no instances of semantic
blocking. Only one situation arose in which semantic
blocking might have occurred. Since the default list
construction mechanism in CGGWS was disabled when
we developed the code generator. we ponverted the
semantic block to a syntactic biock, which was then
resolved by bridge productions. We describe this case,
because it appears to represent a more general sort of
choice betwesn syntax and semantics.

In its simplest form. semantic blocking can erise
in describing the addressing modes of the VAX because
the hardware incorporates typed addressing. For
ezample, the general form of the address computed by
displacement indexing is:

dx »  Plus Plus Const reg Mul Const reg

where the “Const™ left child to the *“‘Mul” operstor is
semantically restricted to be 1, 2, 4 or 8 (correspond-
ing to byts, word, long or double word addressing). If
the second "Const™ is not 1, 2, 4 or 8. a sequence of
instructions must be generated. To avoid semantic
blocking, we introduce the syntactic tokens “One",
“Two™, “Four”, and “Eight'’ in place of the second
“Const” when describing the addressing mode. The
resulting syntactic block is resolved with a bridge pro-
duction. as discussed in the previous section.

The replacement of the semantic constraint by a
syntactic one potentislly reduces the power of the
code generator. Now, the special constants will be
discovered only if they were converted to syntactic
toksns when the input was generated. That might not
be done for every occurrence of those constant values.
On the other hand, it may be faster to handle these
cases syntactically, rather than semantically. This
issue merits further investigation.

0.4. Data Types and Type Conversion

The sxpression trees input to the code gensrator
consist of generic operators attributed with the data
type of the resulting value. Other attributes to the
operators or operands, such as the binding of a dedi-
cated register. need not concern us here. VWith the
exception of the de-referencing operator and the
incomplete set of conversion opsrators. the operands
must be converted to bave the sams type as the
expected result before the operation can be per-
formed. This reflects the semantics of *C", Pascal and
Fortran, as well as the conventions of the hardware.
However, in the incoming expression trees, the
operands have their own data types, which need not
agres with the data type of the operator. The "front
ends’ rarely generate the conversion operators.

In this experiment we did not check any semantic
attributes in the expression tree as a condition to
selecting among productions in a reduce/reduce
conflict, nor did we have the relsted mechanism for
default list construction and application that the basic
Grabem-Glanville algorithm uses. Consequently, we
bad to use syntax to insure that the type of the sctual
operands correctly matched the expected type of the
formal operands, and that appropriate conversion
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instructions wers gensrated. This type matching l»
necessery before the instrustion table (§8.3.1) is
searched.

In order to implement typs checking end type
conversion syntactically, svery symbel that can possi-
bly bave n different type attridbutes must be replaced
by n different symbols, one for esch type. In addition,
the special constants 0, 1, 2, 4 and 8 must have their
own terminal symbols, because of the importance they
play in comparisons and sddress construction.

As & consequence of “syntax for semaentios”, we
bave separats instruction petterns for ssch machine
type for which the operation is defined. Elaborating
thess new symbois and productions by band is tedious
and error prone. Instead, we write gensric operators,
operands and productions, and use a Mmacro preproces-
sor to fype replicate the generic grammar, yielding the
finel grammar from which the tables are constructed.
The macros are thres charasters long. The first and
third characters are identical, and tersely specily the
set of machine data types permitting replication. The
second cherecter specifies which replication operator
is to be applied.

For example, a gensric production describing the
address computed by displacement indexing. the
example used in §8.2.2, is shown bere™:

dx_§T# < Plus_] Plus_| Const reg_l Mul_1 #V§ reg_1 R(7)

The charsctsr “§" indicates that the four machine
types with different data sizes are valid; the class char-
acters “T and V" expand to e type specific suflix
character and constant, respectively. Type replication
yields:
dx_b -+ Plus_] Plus_| Const reg_! Mul_1 One reg_1 )
dz_w < Plus_| Plus_| Const reg_| Mul_| Two reg_} 7)
dx_| < Plus_| Plus_] Const reg_| Mul_l Four reg_) ‘7;
dx_d <« Plus_] Plus_| Const reg_| Mul_1 Eight reg_ ] R(7

Type replicstion has three drewbecks in our
tmpiementation. First, the size of the final grammar is

enormous. Second, the type replicstor only works on

productions whose intra preduction type variation is
consistent; it can not automatically expand data type
eross products to create the sub-grammar describing
the data conversion instructiens. We performed this
cross product by hand and introduced several errors.

The third problem with type replication, as we

interface is constrained by the funection call to “R™
that takes & single argument, & hand assigned produc-
tion number. This restricted call to “R" is caused by
bed design in the grammar specification language. and

R is clear that putting type constraints back into
the semantic constraints would maks the description
smaller. What is less clesr is the effect that would have
speed of the code generator, since semantic

the
Minee “Plus” 9 commumative, end the patierns are

thore are Sve cther gunerie productions devirihing le.
20 1het we do 5t 4o, 5

checking is, in effect, interpretive. We intend to
explors that time/space tradeot.

6.6. Rough Edges

Most of the operators forming the intsrmediate
expression trees were easily implomaested on the VAX,
as it was easy to describe most of the VAX instructions,
operands and dats types. For a number of reasons, ws
had difficultiss implementing operators manipulating
structures, fisids, and unsigned numbers. The inter-
mediats trees are both undocumented and poorly
suited to expressing structures and fislds. Some of
thess probiems would go away if we introduced new
operators in the trees, spent more time canonicalizing
the tree befors pattern matching, and redssigned
soms semantic routines.

The “C" language compound assignment opera-
tors, such as '+=', ars expanded by the tree rewriter
in the first phase. For exampls, the “C” statement

ad=d
becomes:
asa+d

Before “a" is treated as & common subd expression, it is
forced to be directly addressable. This trensformation
introduces additicnal operstors and requirss mechan-
isms in ths third phase to define and refersnce a
locally scoped common sub expression corresponding
to an address. This rewriting rule is compatible with
our algorithm for finding binding idioms, as the assign-
ment operator is first coded as a three address
instruction, and then transformed into a two address
tnstruction. Unfortunately, assignment operators not
implemented by the hardware in one imstruction, such
as unsigned division, are not handled well by our
modsel. Our only reason for performing this transfor-
mation was to minimize the number of patterns in the
machine gremmar, as we did not want to maintain
ssparate patterns for variants of the same hardware
instruction. In retrospsct, the problems we crested
wers much bharder to solve correctly than those we
avoided.

We spent inordinate amounts of time writing and
testing expressions that exercise the union of problem
areas in our code generator. As a bonus, we also found
bugs in the portable “C" compilsr. The complicated
expressions we invented can not be expressed in Pas-
cal or Portran??. Our favorite was an expression with
chained unsigned essignment division operators on
auto incremented bit field operands!

7. Code Geverator Development

We developed our code generator over approxi-
mately a year of parttime work. (Some of this time was
spent improving the table generator.) R R Henry origi-
nally developed the cods generstor to check some
hypotheses conosrning grammar fectorization. The
machine description grammar was first written only for
long data typei and the eesily implemented instruc-
tions, but included all addressing modes. When the fac-
{oring by votheses were smpiricaily verified, we begen to
exter °  .e obds generstor 8o that it could generate
eo¢ v intsresting programs. It took us several

PO WP SRS SO SR ST Y



{terations befors we discoversd the algorithms to
transform and canonicalize tress.

R. Schulman re-wrots the grammaer and semantic
sctions so instruction selection was data type sensitive.
This addition wes compounded by poorly understood
inter-production interactions caused by overfactoring.
We also changed the simple register manager to allo-
cate double registers and to spill and unspill registers.
Adding structure -assignment and fleld operators
affscted all sub-phasss in the code gensrator, most not-
ably the instruction generator.

In the last steges of devsiopment, we became
bogged down because it required over two memory-
intensive hours of VAX 11/780 CPU time to construct a
new set of tabies from the enormous mschine descrip-
tion grammar. Sincs we could only iterate on the gram-
mar once per day, we removed bugs by modifying the
grammar only es a last resort. Neverthsless, the table
constructor was run mors than 225 times during
development, aimost always for a data-type subsstted
description grammar. Subsequently, we have developed
new techniques which spesd up ths table constructor
drematically.

Because the code gensrator was developed by
*‘augmentation'’, instead of by & grand plan, snd the
grammar developed by ‘“avoidance”, the internal
semantics have many rough edges. We gave no thought
to speed when coding the semantics, and find that the
code generator runs slightly slower than the portable
*C’* compiler.

8. Cade Generater Matistics

Our generic maching description grammar for the
VAX, befors type replication. has 458 productions, 115
terminals and 96 non-terminals. After type replication,
the final gra.umar has 1073 productionsg, 219 terminals,
and 148 non-terminals, and yields an instruction selec-
tor with 2216 states®.

Our cods generator spends most of its time pars-
ing. This refiects both the large number of chain pro-
ductions in the grammar, and the time spent manipu-
lating and unpacking the description tables. Many of
the chain productions are & consequence of the syntac-
tic treatment of machine data-type conversion. The
Appendix shows ths actions the parser/pattern matcher
:nku when genersting code for a simple Pascal state-

ont.

Our code generator produces code that passes vali-
dation suites for “C", for Pascal and for PFortran??,
aitbough there are still subtle bugs involving conversion
between signed and unsigned data types. For a particu-
lar large ""C" program, our code generator generates
code in 60.1 seconds, compared with the 55.4 seconds
the portable ‘C’’ compiler spends®. Our coder produces
11388 lines of assembly cods; PCC produces 11399 lines.
Although we have not done any statistical comparisons,
it appears that the code generated by our program is as

q-m.maﬁmrmumm.
111 werminals. 50¢ aen-terminale, with 008 states.

The time for both ineludes the time the
iy sompilery spenmt reading

good or better than that produced by the portable "C**
compiler in almost all cases.

Naturally, our restricted code generation model
affects the quality of cods ws produce We could not
changs the “‘front ends’’ of the “C", Pgscal or Fortran77
compilers. nor oould we change the existing pesphole
optimizer or asssmbler that further process the assem-
bly code the cods generator produces. We do not per-
form data flow, or common sub-expression analysis, or
any non-local code improvement. Mnally, we omitted
certain instructions from our machine description, such
as the loop instructions.

9. Conclusions

We have not yet had any experisnce retargeting
this compiler to other machines. We fesl that the tech-
niques to factor the meachine grammar can be applied
to & new machine. In a new implementation, we would
reconsider our dscision to type operands syntactically.
a convention which grestly increases the size of the
grammar.

We sse two primary benefits of this experiment.
First, in our experience, using a pattern matcher in a
production compiler provides s well understood model
for instruction matching. The pattern matcher is a con-
venient place to sncapsulate, in a well understood way,
almost all the knowledge about instruction patterns.

The experiment has also pointed up some of the
important issues to pursue in developing this method
further. We bave already improved our algorithms for
table construction so that the computation for our com-
plete VAX description, which used to take over two
hours, now takes ten minutes. We are investigating the
tradeofls between syntactic and semantic trestment of
attributes. In that connsection, we are studying the best
way to use the formalized attribute processing pro-
posed by [GanapathiS0]. We are also examining ways to
recognize and handle situations in which maximal
munch is, within our code generation model, sub-
optimal. We are examining the interaction between
pattern-directed code generatior with fiow anslysis and
optimization, and the interface between our method for
table-driven code generation and peephole optimize-
tion.
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12. Appendix: A Comupiete Cede Generation Example

This sppendix shows the code our code generstor produces for the “example
sxpression” in this incomplete Pascal program.

t stoved as & global nams |

| stored in the frams |

§{ ezample szpression |

program sppendix(output);
var a: integer.
foo;
varb: -120 . 127;
begin
;':. 27+ D>
end
bagin
ho
end

-~y

The first pass of the Berkeley Pascal compiler turns the exampis expression into an
intermediate tres with this linearized prefix repressntation. The tree transformation
pbase doss nothing with the tree, 20 it is passed to the pattern matcher “as is".

Conlt b: b
Dr..-l. ‘.fp'l

long assignment
long global name
long addition
byte constant

indirection to fetch a byte

address (long) addition
byte constant

long dedicated register

The code gensrator performsa the following ssquences of shift. reduce. and accept
sctions when generating cods for the example expression.

action on what semantic sction
shift Assign_|
shift Name_)
reduce name_| <« Name_] encapsulate
reduce Dnotype_ lnh l+ name_} encapsulate
reduce notype_lval_l « notype_lvali_| glue
reduce lval_l - notype_lval_| give type
shift Ivat_|
shift Plus_|
shift Const_bd
reduce const_b - Const b encapsulate
reduce const_w - const_b glue
reduce const_L - const w glue
shift const_)
shift Indir_b
shift Plus_!
shift Const_d -
reduce const_ b« Const d encapsulate —— .
reduce const_w + const_b glue ‘ Accewssicr .
reduce const_ |l « const w glue FNTI S oo
shift const_| e
shift Dreg_l| 17111C .8
reduce sreg_L - Dreg_t sncapsulate . P
reduce reg.l - sregl glue u: \sm;ox:n .
reduce disp « Plus_lconst_lreg | encapsulate operand Justificutic.
reduce am_uncon_b - disp glue —
reduce am_b <« am_uncon_ b glue
reduce Dotype_rval_b « Indir_d am_b encapsulate 37._......-—--—--~ -
reduce rvald - notnn rval_b give type tributson/
reduce reg l< rmlbd emit “gwthl b(fp),ro" _Diatr
reduse notype_rvali_| « reg_| encapsuiate Avallnhrliiisy
reduce notype_rval | « notype_rvali_] glue T TTAvalL e
reduce rval_l « notype_rval_l give type IAVA e B
reduce asg_tres_l - Assign_iival_l Plus_! Pint | Swacit.
const_ lrul 1 emit “"oddl3 r0,$27,2"
reduce c_trees « ng_trn glue
reduce tree -« c_lrees glue
reduce ce tree glue
w . 'lut -..... .
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